2024 Update: How Many Clinical Trials Employ Perinatal Sources of Stem Cells?

zhs

News Medical Life Sciences, 12/02/2025 Với hơn 600 loại virus ở người mà chúng ta đã biết và nhiều loại mới đang xuất hiện, các chuyên gia nhấn mạnh việc biến đổi khí hậu, toàn cầu hóa và sự lây lan từ động vật sang người đang đẩy nhanh các mối đe dọa từ virus – chúng ta đã sẵn sàng cho đại dịch tiếp theo chưa? Trong một bài đánh giá gần đây được công bố trên tạp chí Virology, các nhà nghiên cứu đã xem xét sự đa dạng ngày càng tăng của các loại virus ở người, ý nghĩa dịch tễ học của chúng và các chiến lược phòng ngừa để giảm thiểu các mối đe dọa mới nổi. Tổng quan Bạn có biết rằng gần một nửa dân số thế giới có nguy cơ mắc virus sốt xuất huyết (DENV), một căn bệnh do muỗi truyền với số ca mắc được xác nhận tăng 1200% trong hai thập kỷ qua, từ 0,5 triệu ca năm 2000 lên 6,5 triệu ca năm 2023 không? Tuy nhiên, ước tính tỷ lệ mắc thực tế lên tới 400 triệu ca mỗi năm Các bệnh do virus đã định hình nên lịch sử loài người, với các đợt bùng phát gây ra sự tàn phá trên diện rộng, từ Cái chết đen đến đại dịch bệnh do virus corona 2019 (COVID-19). Trong khi một số loại virus, chẳng hạn như bệnh đậu mùa, đã được xóa sổ thông qua tiêm chủng, thì những loại khác vẫn tồn tại, thích nghi và tiếp tục gây ra các mối đe dọa đối với sức khỏe cộng đồng. Sự ra đời của các phân tích siêu gen đã phát hiện ra nhiều loại virus mới, nhưng khả năng gây bệnh của chúng vẫn còn phần lớn chưa được biết đến. Khả năng đột biến và nhảy giữa các loài của virus – thường được tạo điều kiện thuận lợi bởi toàn cầu hóa, biến đổi khí hậu và sự xâm lấn của con người vào môi trường sống của động vật hoang dã – đã dẫn đến sự xuất hiện liên tục của các mối đe dọa truyền nhiễm mới. Các loại virus do muỗi vằn truyền, bao gồm virus DENV và virus Zika (ZIKV), đã chứng minh sự lây lan nhanh chóng của các bệnh vector truyền do biến đổi khí hậu. Hơn nữa, các loại virus có nguồn gốc từ động vật, chẳng hạn như virus corona gây hội chứng hô hấp cấp tính nặng 2 (SARS-CoV-2), đã làm nổi bật bản chất không thể đoán trước của các sự kiện lan truyền virus. Đáng chú ý, dơi là vật chủ chính của một số loại virus lây truyền từ động vật sang người, bao gồm SARS-CoV-2, virus Ebola (EBOV), virus Marburg (MARV) và virus Nipah (NiV), trong khi các vật nuôi trung gian như lợn (virus NiV) và lạc đà (virus MERS-CoV) tạo điều kiện cho virus lây truyền sang người. Cần nghiên cứu thêm để dự đoán và giảm thiểu rủi ro liên quan đến các loại virus mới nổi trước khi chúng trở thành các cuộc khủng hoảng toàn cầu. Sự đa dạng và tiến hóa của virus ở người Trong thế kỷ qua, số lượng virus ở người đã tăng lên đáng kể. Hiện tại, hơn 600 loại virus trong 30 họ virus đã được xác định là tác nhân gây bệnh ở người, bao gồm arbovirus (virus lây truyền qua động vật chân đốt), virus lây truyền từ động vật sang người và virus thích nghi với con người. Arbovirus, chẳng hạn như virus chikungunya (CHIKV) và virus Tây sông Nile (WNV), chủ yếu lây lan qua vật chủ trung gian là muỗi, virus lây truyền từ động vật sang người gồm có virus Ebola (EBOV) và virus Lassa (LASV), có nguồn gốc từ vật chủ là động vật. Nhiều loại virus trong số này có khả năng thích nghi cao, cho phép chúng khai thác vật chủ và con đường lây truyền mới. Sự tiến hóa liên tục của virus được thúc đẩy bởi sự tái tổ hợp gen, đột biến và áp lực chọn lọc. Ví dụ, sự xuất hiện của các chủng virus cúm A mới do sự thay đổi kháng nguyên đã dẫn đến nhiều đại dịch. Tương tự như vậy, sự tiến hóa nhanh chóng của SARS-CoV-2 đã dẫn đến các biến thể có khả năng lây truyền cao, gây khó khăn trong việc ngăn chặn. Sự tương tác giữa khả năng thích nghi của virus và khả năng miễn dịch của con người nhấn mạnh sự cần thiết của việc giám sát liên tục và phát triển vắc-xin. Con đường lây nhiễm và ảnh hưởng đến cá nhân, cộng đồng Virus ở người lây lan qua nhiều cơ chế khác nhau như tiếp xúc trực tiếp, lây truyền qua không khí, qua đường truyền qua véc tơ và lây lan từ động vật sang người. Virus đường hô hấp, chẳng hạn như virus sởi (MeV) và SARS-CoV, lây truyền qua các giọt bắn trong không khí, khiến chúng có khả năng lây nhiễm cao. Virus lây truyền qua đường máu như virus gây suy giảm miễn dịch ở người (HIV) và virus viêm gan B (HBV), gây ra rủi ro thông qua các hoạt động y tế không an toàn và quan hệ tình dục không được bảo vệ. Tác động xã hội và kinh tế của các đợt bùng phát virus là rất sâu sắc. Ngoài các tác động tức thời đến sức khỏe, cá nhân và cộng đồng phải đối mặt với hậu quả lâu dài, chẳng hạn như mất thu nhập, hệ thống chăm sóc sức khỏe quá tải và gián đoạn học tập và làm việc Virus do vector truyền, chẳng hạn như DENV và virus sốt vàng da (YFV), đã gây ra suy thoái kinh tế ở các khu vực bị ảnh hưởng vì gây cản trở du lịch và thương mại. Tương tự như vậy, đại dịch COVID-19 đã phơi bày những lỗ hổng trong chuỗi cung ứng toàn cầu và cơ sở hạ tầng chăm sóc sức khỏe, chứng minh hậu quả sâu rộng của các bệnh do virus. Ngoài ra, virus Oropouche (OROV), một loại arbovirus mới nổi, đã lây lan nhanh chóng ở Mỹ Latinh, với hơn 10.000 trường hợp được báo cáo kể từ tháng 12 năm 2023. Các đợt bùng phát gần đây của nó nhấn mạnh nhu cầu tăng cường giám sát và các chiến lược ứng phó chống lại các mối đe dọa do vector truyền mới nổi. Tác động đến sức khỏe toàn cầu và các mối đe dọa mới nổi Các dịch bệnh và đại dịch do virus gây ra gánh nặng đáng kể cho các hệ thống chăm sóc sức khỏe và nền kinh tế. Đại dịch COVID-19, đã khiến hơn bảy triệu người tử vong trên toàn cầu, nhấn mạnh tác động tàn phá của các loại virus mới. Tương tự như vậy, sự tái phát của DENV, hiện đang đe dọa gần một nửa dân số thế giới, làm nổi bật thách thức trong việc kiểm soát các bệnh do véc tơ truyền. Ngoài các tác động tức thời đến sức khỏe, các loại virus mới nổi còn gây ra hậu quả lâu dài, bao gồm bệnh mãn tính và bất ổn kinh tế. Một số loại virus gây ung thư, bao gồm virus u nhú ở người (HPV), virus Epstein-Barr (EBV), virus viêm gan B (HBV), virus viêm gan C (HCV) và virus lympho T ở người 1 (HTLV-1), được biết là gây ra các loại ung thư như ung thư cổ tử cung, ung thư gan và bệnh bạch cầu tế bào T ở người lớn. Việc kiểm soát bộ gen, can thiệp y tế công cộng và hợp tác toàn cầu là rất quan trọng để giảm thiểu các mối đe dọa do virus trong tương lai. Frank Macfarlane Burnet, người đoạt giải Nobel và là nhà virus học tiên phong, đã mô tả virus như sau: “Virus không phải là một sinh vật riêng lẻ theo nghĩa thông thường của thuật ngữ này, mà là thứ gần như có thể được gọi là một dòng các mô hình sinh học.” Chiến lược phòng ngừa và kiểm soát Các chiến lược phòng ngừa virus hiệu quả bao gồm tiêm chủng, kiểm soát véc tơ, các biện pháp y tế công cộng và hệ thống phát hiện sớm. Tiêm chủng vẫn là nền tảng của công tác phòng ngừa bệnh do virus, với các chương trình thành công đã loại trừ bệnh đậu mùa và giảm lây truyền virus bại liệt. Tuy nhiên, những khoảng cách trong phạm vi tiêm chủng, sự do dự tiêm vắc-xin và những thách thức về hậu cần cản trở các nỗ lực tiêm chủng ở nhiều khu vực. Ví dụ, vắc-xin sốt xuất huyết (Dengvaxia) chỉ được khuyến cáo cho những người đã tiếp xúc với DENV, hạn chế việc sử dụng rộng rãi. Các biện pháp kiểm soát vectơ, chẳng hạn như loại bỏ nơi sinh sản của muỗi và triển khai muỗi biến đổi gen, đã cho thấy triển vọng trong việc hạn chế lây truyền virus arbovirus. Đối với virus lây truyền từ động vật sang người, giám sát động vật hoang dã và cải thiện các biện pháp an toàn sinh học trong chăn nuôi là rất quan trọng. Các biện pháp bảo vệ cá nhân, chẳng hạn như vệ sinh tay, đeo khẩu trang và thực hành tình dục an toàn, có thể làm giảm đáng kể sự lây lan của virus . Hợp tác quốc tế là điều cần thiết để chuẩn bị ứng phó với đại dịch. Tổ chức Y tế Thế giới (WHO) đã ưu tiên các tác nhân gây bệnh có nguy cơ cao, bao gồm Bệnh X (mối đe dọa đại dịch trong tương lai chưa xác định), nhấn mạnh nhu cầu nghiên cứu chủ động và các chiến lược ứng phó. Việc tăng cường cơ sở hạ tầng y tế, nâng cao năng lực chẩn đoán và đầu tư vào phát triển thuốc kháng virus là điều bắt buộc để chống lại các mối đe dọa do virus gây ra. Michael Osterholm, Giám đốc Trung tâm Nghiên cứu và Chính sách Bệnh truyền nhiễm, đã nhấn mạnh tính khó lường của bệnh cúm gia cầm: “Điều thực sự quan trọng là phải hiểu rằng không ai – ý tôi là không ai – biết virus cúm H5N1 sẽ gây ra hậu quả gì cho con người”. Kết luận Virus ở người là một thách thức ngày càng lớn do sự tiến hóa nhanh chóng, các con đường lây truyền đa dạng và tác động đến sức khỏe toàn cầu. Sự tương tác giữa con người và ổ chứa virus ngày càng tăng, do biến đổi khí hậu, đô thị hóa và du lịch quốc tế thúc đẩy, đã làm tăng nguy cơ xuất hiện các bệnh truyền nhiễm mới nổi.// Sự phát triển nhanh chóng của các loại virus truyền qua vectơ và động vật đòi hỏi phải tăng cường giám sát, các chiến lược phòng ngừa và hợp tác toàn cầu để giảm thiểu các đợt bùng phát trong tương lai. Tiêm chủng, kiểm soát vectơ và các biện pháp can thiệp y tế công cộng vẫn đóng vai trò quan trọng trong việc giảm gánh nặng của các bệnh do virus. Tuy nhiên, các đột biến virus mới nổi và tình trạng hạn chế về vắc-xin cho một số loại virus nhất định, chẳng hạn như arbovirus và coronavirus, đặt ra những thách thức liên tục. Đại dịch COVID-19 đã chứng minh sự cần thiết của việc chủ động chuẩn bị ứng phó với đại dịch, bao gồm kiểm soát bộ gen và các khuôn khổ ứng phó nhanh. “Virus là một mảnh xấu được bọc trong protein.” – Peter Medawar, nhà miễn dịch học người Anh và là người đoạt giải Nobel. Tài liệu tham khảo He, M., He, C., & Ding, N. (2025). Human viruses: An ever-increasing list. Virology, 604, 110445. DOI: 10.1016/j.virol.2025.110445, https://www.sciencedirect.com/science/article/pii/S0042682225000571 Nguồn: News Medical Life Sciences Link: https://www.news-medical.net/news/20250212/The-growing-list-of-human-viruses-Are-we-prepared-for-the-next-outbreak.aspx

Table of Content

Parent’s Guide to Cord Blood, September , 2024

We are continuing our tradition of issuing periodic updates on trends in clinical trials that employ perinatal sources of stem cells. This update extends our timeline through the end of 2023.

Cell Source Cumulative # Trials Advanced Cell Therapy Through end of 2023
Umbilical Cord Blood +/- Non-Perinatal Sources 316
Umbilical Cord Tissue +/- Non-Perinatal Sources 581
Other Perinatal Sources (Placenta, Amniotic) & Mixed Perinatal Sources 149

Below is a timeline of the number of clinical trials per year that performed advanced cell therapy with cells sourced from umbilical cord blood, umbilical cord tissue, or other/mixed perinatal sources. This graph is compatible with our last perinatal trial review through the end of 2021 and can be viewed as an extension of that timeline1.

1

Some readers may be shocked that the number of clinical trials employing umbilical cord mesenchymal stromal cells (UC-MSC) has dropped by almost half since a peak in 2020-2021. In fact, this is not surprising, and it reflects the impact of the COVID-19 pandemic on the cell therapy field. Our team at CellTrials.org has previously documented that the COVID-19 pandemic caused a 16% surge in overall registrations of advanced cell therapy clinical trials2. But for MSC specifically, the number of clinical trial registrations doubled from 2019 to 20202. We have also published a report noting that during 2020-2022, 41% of the advanced cell therapy trials for COVID-19 relied on perinatal sources of cells3. By April 2023, 65% of the published outcomes from these trials were studies that employed cells of perinatal origin3. And finally, the largest meta-analysis of MSC therapies for COVID-19 found that infusions of MSC yielded improved patient survival (RR=0.63 with 95% Confidence Interval 0.46 to 0.85)4. Despite the big community effort that went into perinatal clinical trials for COVID-19, it should not be surprising that with the pandemic winding down the yearly number of advanced cell therapy trials from perinatal sources has returned to pre-pandemic levels. Nonetheless, over the two years since our last summary, from the end of 2021 to the end of 2023, the cumulative number of perinatal trials in advanced cell therapy increased by 17% from 891 to 1046.

We have also created pie charts of the diagnoses treated in the 538 perinatal advanced cell therapy trials registered over the five years 2019-2023. This time period was chosen to showcase recently registered trials, and to bracket the COVID-19 era. In previous reviews we have tried to group trials purely on the basis of cell source, into cord blood trials versus cord tissue trials. But this has always been overly simplistic, because cord blood can be a source of immunotherapy cells or it can be used to culture MSC. And there is also the question of how to include trials sourced from the placenta. The placenta holds blood, the blood vessels have endothelial cells, the placental tissue can be used to culture MSC, and the amniotic membrane holds epithelial cells. In this year’s review, we have decided to create three groups of perinatal cell therapy trials based on the cellular mechanism of action: immunotherapy, MSC, and everything else.

2

Our first pie chart shows the diagnosis categories for 108 perinatal trials registered 2019-2023 which employ cells that belong to the immune system. These include unmanipulated MNC from cord blood or placenta blood, and immunotherapy cells cultured from cord blood or placental blood. Only 6% (6/108) of the trials use placental blood, but 40% (43/108) of the trials are deriving specific immunotherapy cell types from perinatal blood. The manufactured cell types include: expanded CD34+, NK, CAR-NK, TCR-NK, CIK, MAK, CAR-T, and T-reg cells. The largest diagnosis group for the years 2019-2023 is Hematology/Oncology, holding 32% (35/108) of the trials. It is notable that 86% (30/35) of this group is composed of immunotherapy trials that employ cells which have been expanded or derived from cord or placental blood. The remaining 14% (5/35) of Hematology/Oncology trials which employ unmanipulated cord blood as part of advanced cell therapy are all located in Asian countries. Note that the Neurologic diagnosis group, which represents 22% (24/108) of the cord blood trials, includes neurologic complications associated with birth, such as Hypoxic Ischemic Encephalopathy and Cerebral Palsy, as well as stroke and adult neurodegenerative disorders. The separate diagnosis category Premature Birth is dominated, at 63% (5/8), by trials for bronchopulmonary dysplasia, and includes other premature birth complications which are not neurologic.

3

Our second pie chart shows the diagnosis categories for 402 perinatal trials registered 2019-2023 which employ MSC. Cord blood was the starting material for deriving MSC in 4% (17/402) of these trials, with 53% (9/17) of those trials located in South Korea. Also 9% (36/402) of the trials derived MSC from placenta or amniotic membrane or multiple perinatal sources. The majority of the trials, 87% (349/402), derived MSC only from umbilical cord tissue, although the MSC may have been delivered together with other (non-perinatal) cells or agents or seeded on a scaffold. When sorted by diagnosis category, the largest indication for use was COVID-19 and other lung conditions, at 22% (87/402), not surprisingly. Once again, the second largest category of trials is Neurologic conditions, holding 12% (50/402) of the MSC trials, and Orthopedic trials are third with 11% (44/402) of the MSC trials. The most noticeable aspect of the pie chart of perinatal MSC trials is that they are fairly evenly distributed among multiple medical indications, with seven diagnosis categories each holding about 7% of the perinatal MSC trials on average.

Among the 402 clinical trials with perinatal MSC registered 2019-2023, only 1.2% (5/402) were designed to compare the clinical efficacy of perinatal MSC versus adult sources of MSC. There were slightly more trials, 1.5% (6/402), that tested UC-MSC against its conditioned medium (which effectively holds exosomes from UC-MSC). Much more work is needed to clarify the clinical impact of the biological differences between perinatal MSC and adult MSC that have been identified in laboratory studies5.

Finally, there is a group of 28 perinatal trials registered 2019-2023 which do not employ immunotherapy cells or MSC. In this catch-all category, 50% (14/28) of trials employ amniotic epithelial cells, 21% (6/28) employ sheets of amniotic membrane as scaffolding for other cells, and 18% (5/28) employ endothelial cells from umbilical cord blood vessels.

This year’s update on clinical trials of perinatal advanced cell therapy demonstrates that research in this field is ongoing at the same pace as before the COVID-19 pandemic, employs a variety of cell types, and is targeting multiple indications for use.

References

  1. Verter F. 2022 Update: How many clinical trials use cord blood or cord tissue? Parent’s Guide to Cord Blood Foundation Newsletter Published 2022-08
  2. Verter F, Silva Couto P, Bersenev A. New trials of cell-based therapy surged in 2020, both because of and despite the pandemic. org News Published 2021-04-25
  3. Verter F, Silva Couto P. 2023 Update: Development of COVID-19 Therapies from Birthing Tissues and Cord Blood. SCTM 2023; 12S1:S8.
  4. Couto PS, Al-Arawe N, Filgueiras IS, Fonseca DLM, Hinterseher I, Catar RA, Chinnadurai R, Bersenev A, Cabral-Marques O, Moll G, Verter F. Systematic review and meta-analysis of cell therapy for COVID-19: global clinical trial landscape, published safety/efficacy outcomes, cell product manufacturing and clinical delivery. Frontiers Immunology 2023; 14:1200180.
  5. Silva Couto P, Stibbs DJ, Rotondi MC, Khalife R, Wolf D, Takeuchi Y, Rafiq QA. Biological differences between adult and perinatal human mesenchymal stromal cells and their impact on the manufacturing processes. Cytotherapy 2024; vol:1-13.

Source: Parent’s Guide to Cord Blood

Link: https://parentsguidecordblood.org/en/news/2024-update-how-many-clinical-trials-employ-perinatal-sources-stem-cells

Leave a Comment

Your email address will not be published. Required fields are marked *

Related Posts

zhs

News Medical Life Sciences, 12/02/2025 Với hơn 600 loại virus ở người mà chúng ta đã biết và nhiều loại mới đang xuất hiện, các chuyên gia nhấn mạnh việc biến đổi khí hậu, toàn cầu hóa và sự lây lan từ động vật sang người đang đẩy nhanh các mối đe dọa từ virus – chúng ta đã sẵn sàng cho đại dịch tiếp theo chưa? Trong một bài đánh giá gần đây được công bố trên tạp chí Virology, các nhà nghiên cứu đã xem xét sự đa dạng ngày càng tăng của các loại virus ở người, ý nghĩa dịch tễ học của chúng và các chiến lược phòng ngừa để giảm thiểu các mối đe dọa mới nổi. Tổng quan Bạn có biết rằng gần một nửa dân số thế giới có nguy cơ mắc virus sốt xuất huyết (DENV), một căn bệnh do muỗi truyền với số ca mắc được xác nhận tăng 1200% trong hai thập kỷ qua, từ 0,5 triệu ca năm 2000 lên 6,5 triệu ca năm 2023 không? Tuy nhiên, ước tính tỷ lệ mắc thực tế lên tới 400 triệu ca mỗi năm Các bệnh do virus đã định hình nên lịch sử loài người, với các đợt bùng phát gây ra sự tàn phá trên diện rộng, từ Cái chết đen đến đại dịch bệnh do virus corona 2019 (COVID-19). Trong khi một số loại virus, chẳng hạn như bệnh đậu mùa, đã được xóa sổ thông qua tiêm chủng, thì những loại khác vẫn tồn tại, thích nghi và tiếp tục gây ra các mối đe dọa đối với sức khỏe cộng đồng. Sự ra đời của các phân tích siêu gen đã phát hiện ra nhiều loại virus mới, nhưng khả năng gây bệnh của chúng vẫn còn phần lớn chưa được biết đến. Khả năng đột biến và nhảy giữa các loài của virus – thường được tạo điều kiện thuận lợi bởi toàn cầu hóa, biến đổi khí hậu và sự xâm lấn của con người vào môi trường sống của động vật hoang dã – đã dẫn đến sự xuất hiện liên tục của các mối đe dọa truyền nhiễm mới. Các loại virus do muỗi vằn truyền, bao gồm virus DENV và virus Zika (ZIKV), đã chứng minh sự lây lan nhanh chóng của các bệnh vector truyền do biến đổi khí hậu. Hơn nữa, các loại virus có nguồn gốc từ động vật, chẳng hạn như virus corona gây hội chứng hô hấp cấp tính nặng 2 (SARS-CoV-2), đã làm nổi bật bản chất không thể đoán trước của các sự kiện lan truyền virus. Đáng chú ý, dơi là vật chủ chính của một số loại virus lây truyền từ động vật sang người, bao gồm SARS-CoV-2, virus Ebola (EBOV), virus Marburg (MARV) và virus Nipah (NiV), trong khi các vật nuôi trung gian như lợn (virus NiV) và lạc đà (virus MERS-CoV) tạo điều kiện cho virus lây truyền sang người. Cần nghiên cứu thêm để dự đoán và giảm thiểu rủi ro liên quan đến các loại virus mới nổi trước khi chúng trở thành các cuộc khủng hoảng toàn cầu. Sự đa dạng và tiến hóa của virus ở người Trong thế kỷ qua, số lượng virus ở người đã tăng lên đáng kể. Hiện tại, hơn 600 loại virus trong 30 họ virus đã được xác định là tác nhân gây bệnh ở người, bao gồm arbovirus (virus lây truyền qua động vật chân đốt), virus lây truyền từ động vật sang người và virus thích nghi với con người. Arbovirus, chẳng hạn như virus chikungunya (CHIKV) và virus Tây sông Nile (WNV), chủ yếu lây lan qua vật chủ trung gian là muỗi, virus lây truyền từ động vật sang người gồm có virus Ebola (EBOV) và virus Lassa (LASV), có nguồn gốc từ vật chủ là động vật. Nhiều loại virus trong số này có khả năng thích nghi cao, cho phép chúng khai thác vật chủ và con đường lây truyền mới. Sự tiến hóa liên tục của virus được thúc đẩy bởi sự tái tổ hợp gen, đột biến và áp lực chọn lọc. Ví dụ, sự xuất hiện của các chủng virus cúm A mới do sự thay đổi kháng nguyên đã dẫn đến nhiều đại dịch. Tương tự như vậy, sự tiến hóa nhanh chóng của SARS-CoV-2 đã dẫn đến các biến thể có khả năng lây truyền cao, gây khó khăn trong việc ngăn chặn. Sự tương tác giữa khả năng thích nghi của virus và khả năng miễn dịch của con người nhấn mạnh sự cần thiết của việc giám sát liên tục và phát triển vắc-xin. Con đường lây nhiễm và ảnh hưởng đến cá nhân, cộng đồng Virus ở người lây lan qua nhiều cơ chế khác nhau như tiếp xúc trực tiếp, lây truyền qua không khí, qua đường truyền qua véc tơ và lây lan từ động vật sang người. Virus đường hô hấp, chẳng hạn như virus sởi (MeV) và SARS-CoV, lây truyền qua các giọt bắn trong không khí, khiến chúng có khả năng lây nhiễm cao. Virus lây truyền qua đường máu như virus gây suy giảm miễn dịch ở người (HIV) và virus viêm gan B (HBV), gây ra rủi ro thông qua các hoạt động y tế không an toàn và quan hệ tình dục không được bảo vệ. Tác động xã hội và kinh tế của các đợt bùng phát virus là rất sâu sắc. Ngoài các tác động tức thời đến sức khỏe, cá nhân và cộng đồng phải đối mặt với hậu quả lâu dài, chẳng hạn như mất thu nhập, hệ thống chăm sóc sức khỏe quá tải và gián đoạn học tập và làm việc Virus do vector truyền, chẳng hạn như DENV và virus sốt vàng da (YFV), đã gây ra suy thoái kinh tế ở các khu vực bị ảnh hưởng vì gây cản trở du lịch và thương mại. Tương tự như vậy, đại dịch COVID-19 đã phơi bày những lỗ hổng trong chuỗi cung ứng toàn cầu và cơ sở hạ tầng chăm sóc sức khỏe, chứng minh hậu quả sâu rộng của các bệnh do virus. Ngoài ra, virus Oropouche (OROV), một loại arbovirus mới nổi, đã lây lan nhanh chóng ở Mỹ Latinh, với hơn 10.000 trường hợp được báo cáo kể từ tháng 12 năm 2023. Các đợt bùng phát gần đây của nó nhấn mạnh nhu cầu tăng cường giám sát và các chiến lược ứng phó chống lại các mối đe dọa do vector truyền mới nổi. Tác động đến sức khỏe toàn cầu và các mối đe dọa mới nổi Các dịch bệnh và đại dịch do virus gây ra gánh nặng đáng kể cho các hệ thống chăm sóc sức khỏe và nền kinh tế. Đại dịch COVID-19, đã khiến hơn bảy triệu người tử vong trên toàn cầu, nhấn mạnh tác động tàn phá của các loại virus mới. Tương tự như vậy, sự tái phát của DENV, hiện đang đe dọa gần một nửa dân số thế giới, làm nổi bật thách thức trong việc kiểm soát các bệnh do véc tơ truyền. Ngoài các tác động tức thời đến sức khỏe, các loại virus mới nổi còn gây ra hậu quả lâu dài, bao gồm bệnh mãn tính và bất ổn kinh tế. Một số loại virus gây ung thư, bao gồm virus u nhú ở người (HPV), virus Epstein-Barr (EBV), virus viêm gan B (HBV), virus viêm gan C (HCV) và virus lympho T ở người 1 (HTLV-1), được biết là gây ra các loại ung thư như ung thư cổ tử cung, ung thư gan và bệnh bạch cầu tế bào T ở người lớn. Việc kiểm soát bộ gen, can thiệp y tế công cộng và hợp tác toàn cầu là rất quan trọng để giảm thiểu các mối đe dọa do virus trong tương lai. Frank Macfarlane Burnet, người đoạt giải Nobel và là nhà virus học tiên phong, đã mô tả virus như sau: “Virus không phải là một sinh vật riêng lẻ theo nghĩa thông thường của thuật ngữ này, mà là thứ gần như có thể được gọi là một dòng các mô hình sinh học.” Chiến lược phòng ngừa và kiểm soát Các chiến lược phòng ngừa virus hiệu quả bao gồm tiêm chủng, kiểm soát véc tơ, các biện pháp y tế công cộng và hệ thống phát hiện sớm. Tiêm chủng vẫn là nền tảng của công tác phòng ngừa bệnh do virus, với các chương trình thành công đã loại trừ bệnh đậu mùa và giảm lây truyền virus bại liệt. Tuy nhiên, những khoảng cách trong phạm vi tiêm chủng, sự do dự tiêm vắc-xin và những thách thức về hậu cần cản trở các nỗ lực tiêm chủng ở nhiều khu vực. Ví dụ, vắc-xin sốt xuất huyết (Dengvaxia) chỉ được khuyến cáo cho những người đã tiếp xúc với DENV, hạn chế việc sử dụng rộng rãi. Các biện pháp kiểm soát vectơ, chẳng hạn như loại bỏ nơi sinh sản của muỗi và triển khai muỗi biến đổi gen, đã cho thấy triển vọng trong việc hạn chế lây truyền virus arbovirus. Đối với virus lây truyền từ động vật sang người, giám sát động vật hoang dã và cải thiện các biện pháp an toàn sinh học trong chăn nuôi là rất quan trọng. Các biện pháp bảo vệ cá nhân, chẳng hạn như vệ sinh tay, đeo khẩu trang và thực hành tình dục an toàn, có thể làm giảm đáng kể sự lây lan của virus . Hợp tác quốc tế là điều cần thiết để chuẩn bị ứng phó với đại dịch. Tổ chức Y tế Thế giới (WHO) đã ưu tiên các tác nhân gây bệnh có nguy cơ cao, bao gồm Bệnh X (mối đe dọa đại dịch trong tương lai chưa xác định), nhấn mạnh nhu cầu nghiên cứu chủ động và các chiến lược ứng phó. Việc tăng cường cơ sở hạ tầng y tế, nâng cao năng lực chẩn đoán và đầu tư vào phát triển thuốc kháng virus là điều bắt buộc để chống lại các mối đe dọa do virus gây ra. Michael Osterholm, Giám đốc Trung tâm Nghiên cứu và Chính sách Bệnh truyền nhiễm, đã nhấn mạnh tính khó lường của bệnh cúm gia cầm: “Điều thực sự quan trọng là phải hiểu rằng không ai – ý tôi là không ai – biết virus cúm H5N1 sẽ gây ra hậu quả gì cho con người”. Kết luận Virus ở người là một thách thức ngày càng lớn do sự tiến hóa nhanh chóng, các con đường lây truyền đa dạng và tác động đến sức khỏe toàn cầu. Sự tương tác giữa con người và ổ chứa virus ngày càng tăng, do biến đổi khí hậu, đô thị hóa và du lịch quốc tế thúc đẩy, đã làm tăng nguy cơ xuất hiện các bệnh truyền nhiễm mới nổi.// Sự phát triển nhanh chóng của các loại virus truyền qua vectơ và động vật đòi hỏi phải tăng cường giám sát, các chiến lược phòng ngừa và hợp tác toàn cầu để giảm thiểu các đợt bùng phát trong tương lai. Tiêm chủng, kiểm soát vectơ và các biện pháp can thiệp y tế công cộng vẫn đóng vai trò quan trọng trong việc giảm gánh nặng của các bệnh do virus. Tuy nhiên, các đột biến virus mới nổi và tình trạng hạn chế về vắc-xin cho một số loại virus nhất định, chẳng hạn như arbovirus và coronavirus, đặt ra những thách thức liên tục. Đại dịch COVID-19 đã chứng minh sự cần thiết của việc chủ động chuẩn bị ứng phó với đại dịch, bao gồm kiểm soát bộ gen và các khuôn khổ ứng phó nhanh. “Virus là một mảnh xấu được bọc trong protein.” – Peter Medawar, nhà miễn dịch học người Anh và là người đoạt giải Nobel. Tài liệu tham khảo He, M., He, C., & Ding, N. (2025). Human viruses: An ever-increasing list. Virology, 604, 110445. DOI: 10.1016/j.virol.2025.110445, https://www.sciencedirect.com/science/article/pii/S0042682225000571 Nguồn: News Medical Life Sciences Link: https://www.news-medical.net/news/20250212/The-growing-list-of-human-viruses-Are-we-prepared-for-the-next-outbreak.aspx

News Medical Life Sciences,  February 12,  2025 With over 600 known

Xem thêm »